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It is argued that because many fullerene molecular graphs admit multiple totally symmetric Kekul6 
structures, the fullerene class of molecules may provide examples of bond-stretch isomerism (x- 
tautomerism). Calculations on the prototype 0, isomer of C, demonstrate the existence on the 
potential surface for 28 carbon atoms of at least three enantiomorphic pairs of fullerene minima of 
this symmetry, all with the same connectivity. The three patterns of long and short bonds in these 
isomers are 'orthogonal' in that any one CC bond is formally double in precisely one and formally 
single in precisely t w o  of the structures. 

The term 'bond-stretch isomerism' was introduced by Stohrer 
and Hoffmann' to describe cases in which a molecule has 
two or more stable conformations that are related by simple 
bond stretching but differ in their electronic configur- 
ations. Although the concept is straightforwardly defined, 
unambiguous experimental examples have proved elusive; 
early reports of 'distortional isomers' of molybdenum 0x0 
complexes3 are now thought to refer to mixtures of distinct 
chemical  compound^,^ and claims for other bond-stretch pairs 
are regarded as non-proven.2 In the present paper we argue that 
the new and as yet imperfectly explored class of fullerene 
molecules may yield examples of a specific form of bond-stretch 
isomerism. This line of reasoning is supported by calculations 
that show multiple minima for the D ,  fullerene Czs. 

The central idea of the present paper can be simply stated. A 
KekulC structure for a fullerene corresponds to a distribution of 
formal single and double bonds that implies a specific set of 
long and short bond lengths and hence an idealised geometric 
structure for the cage. If the Kekulk structure is totally 
symmetric, then that idealised geometry is compatible with the 
point group symmetry (deducible from the molecular graph ') 
and is a consistent guess for the molecular geometry. Our 
proposal is that any totally symmetric Kekule structure could 
therefore conceivably correspond to a minimum on the 
potential surface and if two or more such Kekulk structures do 
in fact correspond to minima, then they should be examples of 
bond-stretch isomers (perhaps 'n-tautomers' would be a better 
term), because they would differ in idealised geometry and could 
differ in electronic configuration. Before exhibiting an explicit 
example where this prediction turns out to be true, at least at a 
semiempirical level, we summarise in the following sections the 
qualitative theory of fullerenes and show how symmetry factors 
influence the number of possible totally symmetric KekulC 
structures. 

Theoretical Background 

A fullerene is a molecule in the form of a geometrically closed 
polyhedral cage C, consisting of n carbon atoms arranged in 12 
pentagonal and ( 4 2  - 10) hexagonal rings. Each atom is 
connected to three neighbours by o bonds, and participates in a 
surface n system to which it contributes one electron and a 
single radially directed valence orbital (a p or sp" hybrid).6 

The qualitative features of the electronic structure can be 
described by pictorial molecular orbital theory. Although all 
fullerenes are by definition geometrically closed, only a fraction 
of them have properly closed-shell electronic configurations. 

Electronic closed shells are found' for the well defined 
geometric structures that belong to the leapfrog ' and cylinder 
series and so occur at certain 'magic numbers' of carbon atoms 
[60 + 6k (k # 1) for leapfrogs, 70 + 30k (all k) and 84 + 36k 
(all k )  for cylinders]. c60 is the first leapfrog fullerene. Some 
properly closed-shell configurations exist outside these series 
for large numbers of atoms. 

A localised valence bond picture based on Kekule can also be 
used.'-' ' Fullerenes generally have many Kekule structures 
(KS); icosahedral c60 has 12 500, for example.I2 However, the 
electronic structure of a given fullerene may be dominated by a 
relatively small number of these. It has been argued, for 
instance, that c60 is not aromatic in any traditional sense, and 
that its physical and chemical properties are compatible with 
the dominance of just one KS, the only one of the 12 500 to have 
the full I h  symmetry of the nuclear framework. ' c 6 ,  is therefore 
quite unlike an aromatic compound in which the wavefunction 
would typically consist of a mixture of several KSs, each with 
less than full symmetry (e.g. in benzene the D 6 h  ground-state 
wavefunction combines two D 3 h  KSs). If it turns out that other 
fullerenes also have more localised structures than at first 
expected, then the argument of this paper is that the prospects 
for finding bond-stretch isomerism in this class of molecules are 
good. 

There is one class of fullerenes for which a totally symmetric 
Kekulk structure can always be found. A leapfrog cluster C, is 
notionally derived by omnicapping and dualising a smaller 
fullerene with one third the number of atoms;7 since fullerene 
isomers exist for n = 20 + 2k (k # I), leapfrogs exist for n = 
60 + 6k (k  # 1). All leapfrogs have properly closed electronic 
 shell^,^ but more importantly for the present discussion all have 
at least one totally symmetric KS.' ' One third of the edges of a 
leapfrog fullerene correspond to 90" rotations of edges of the 
parent. Placing a double bond along each of these special edges 
gives a localised valence-bond structure with full molecular 
symmetry incorporating the greatest possible number ( 4 3 )  of 
benzenoid hexagons. ' Additional totally symmetric KS may 
exist for a leapfrog isomer (Fig. 1). 

Totally symmetric Kekulk structures are possible in many 
other cases. Any fullerene has at least three KS, because a 
fullerene is a trivalent polyhedral cage. l4 The structures are 
mutually orthogonal in that each edge appears as a double bond 
in one and only one of the three. If the fullerene happens to have 
C, point group symmetry, then trivially all of its KekulC 
structures are totally symmetric. As most fullerene isomers are 
in fact of C,  symmetry," most fullerenes have at least three 
totally symmetric KS. 
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A An edge of a fullerene can occupy a site of C2v, C,, C2 or C ,  
symmetry;, an edge in a C2, site must be a formal double bond 
in any totally symmetric KS that may exist, an edge in a C, site 
must be double if wholly in the mirror plane, but may be single 
or double if perpendicular to the plane. In a totally symmetric 
KS any orbit of edges, of whatever site symmetry, in which 
members share common atoms is automatically made up of 
single bonds, and any two orbits of edges whose members share 
atoms are mutually exclusive in the double-bond list. 

The edge orbits also determine the n electronic configuration 
corresponding to a totally symmetric KS, as follows. If a 
fullerene C, belonging to a point group G of order I GI has e2v, 
e2, e, and e l  orbits of edges with C2v, C,, Cs and C ,  site 
symmetry, respectively, then summation of edges gives eqn. (1 ), 

e2v e2 e 
4 2 2  

- + - + + + e l  

Fig. I Non-uniqueness of totally symmetric KekulC structures. The 
benzenoid hexagons of the canonical totally symmetric KS of a leapfrog 
fullerene (see ref. 1 1  for a construction) are Clar sextets. Simultaneous 
exchange of single and double bonds in all members of an orbit of such 
hexagons may lead to a new totally symmetric KS. Examples where this 
happens in the icosahedral fullerenes are (a) C,,, and (b) C7,,. In each 
case the pattern is repeated on the 20 faces of an icosahedron to make 
the full cage, and the three corners of the master triangle are then 
pentagon centres in the full cage. 

Symmetry Arguments 

Some general group-theoretical criteria for the existence of 
totally symmetric KS can be stated. The basic concept 
needed is that of an orbit-a set of equivalent points or objects 
permuted amongst themselves by the operations of the point 
group. Members of an orbit share a characteristic site symmetry 
related to that of the molecule as a whole by (No. of points in 
orbit) x (order of site symmetry group) = (order of full point 
group).16 If the molecule decorated with a particular KS is to 
remain totally symmetric, then that KS must treat all members 
of an orbit in the same way, i.e. all equivalent atoms, edges or 
faces must remain equivalent in the KS. 

The atoms of a fullerene lie at sites of C3v, C,, C, or C ,  
symmetry., If any atoms are in sites of C,, or C3 symmetry (i.e. 
if they lie on a C,  axis), then a totally symmetric KS is 
impossible, because one of the three equivalent bonds linked to 
such an atom must be double and two must be single. A 
corollary is that no open-shell icosahedral fullerene (of I or I h  

symmetry) can have a totally symmetric KS, since all such 
fullerenes have 20 atoms lying on C,  axes; all other icosahedral 
fullerenes have no atom on a C, axis and are leapfrogs of the 
open-shell series,' each with at least one totally symmetric KS. 
Again, orbit counting shows that although all fullerenes C, of 
tetrahedral symmetry (T,,, Td or T )  consist of multiples of four 
atoms, only those where n is a multiple of 12 can have a totally 
symmetric KS; those with n = 12k + 4 or 12k + 8 atoms have 
four and eight atoms on C ,  axes, respectively. Similarly, 
fullerenes of D3d,  D 3 h  or D, symmetry can have totally 
symmetric KS only if they have 6k and not 6k + 2 atoms, and 
fullerenes of C3v, CJh or C3 symmetry must have 3k atoms to 
have a totally symmetric KS. Leapfrogging preserves molecular 
symmetry but replaces atoms on C,  axes by hexagons centred 
on the axis and multiplies the atom count by a factor of three, 
and so for all these groups produces a cage that satisfies the 
conditions for a totally symmetric KS. The existence of a totally 
symmetric KS for any leapfrog '' is therefore understandable. 

If an atom lies at a site of C, symmetry (i.e. if it lies in a mirror 
plane but not on a C, axis) then its double bond is fixed in the 
totally symmetric KS and must lie in the local mirror plane. C1 
site symmetry for an atom places no limitation on the KS. 

and if d,,, d,, d, and d ,  are the numbers of orbits of double 
bonds, summation gives eqn. (2 ) ,  where d2v = e2v.  Now, any 

\ 4  L L / L  

orbit has a permutation representation I-, within the point 
group of the molecule and so the total reducible representation 
of the formal double bonds (i.e. the symmetries spanned by the 
doubly occupied n orbitals) in a particular totally symmetric KS 
is found by summing the I-, for all d2v + d2 + d, + d ,  edge 
orbits, taking into account the fact that distinct orbits with the 
same site symmetry but different I-, values are possible in some 
groups.16 The total electronic configuration can be found by 
adding the reducible representations spanned by the 3n/2 edge- 
precise single bonds and n ls2 carbon cores. In every case, 
a given totally symmetric KS generates an electronic con- 
figuration with well defined occupation numbers in each 
symmetry. Different KSs may correspond to the same set of 
occupation numbers, as for example in C1 fullerenes, where all 
KS are symmetric and all have the trivial n configuration 
la2 (n/2)a2. 

This simple model is a way of supplying a reasonable guess 
for the electronic configuration if the geometric structure 
corresponds closely to that implied by a single totally sym- 
metric KS. For example, the orbit of 30 equivalent double 
bonds in the unique totally symmetric KS of icosahedral 
c60 has a permutation representation shown in eqn. (3), 
implying precisely the n: configuration found in molecular 

= A ,  + G, + 2Hg + T,, + T2, + G, + H ,  (3) 

orbital calculations on this molecule. 
When there is no totally symmetric KS the configuration is 

less easy to guess, as it must be a superposition of several 
resonance structures, and even when one or several totally 
symmetric KSs exist it is always possible that the ground-state 
electron configuration will be a superposition. An example of 
the latter case is C70 for which there are two totally symmetric 
KS, but the optimal structure predicted by an SCF calculation 
has benzenoid rings around its equator and a configuration that 
is an equal combination of two non-totally symmetric KS. ' * 

Finally, the faces of a fullerene have site symmetries C5v, C,, 

(hexagons)., Axes of high order (C ,  or c6) passing through a 
face force all bonds within the ring to be single and bonds e m  to 
the ring to be double in a totally symmetric KS. Local mirror 
planes passing through ring vertices also fix double bonds. 

Explicit construction of all possible Kekule structures 

cs Or c1 (pentagons) Or C ~ V ,  c6, c 3 v ,  c3, C ~ V ,  c2, c s  or c1 
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Table 1 Totally symmetric Kekule structures of fullerene isomers C, (n from 20-40). N,  is the number of totally symmetric and N,  is the total 
number of KekulC structures. Each isomer is listed in canonical order as a ring spiral l 9  and assigned to its point group G as described in ref. 5. For 
chiral point groups the spiral represents a pair of enantiomers each with N, totally symmetric and N, general KS 

n Isomer G N, Nt n Isomer G N. N ,  

20 
24 
26 
28 
28 
30 
30 
30 
32 
32 
32 
32 
32 
32 
34 
34 
34 
34 
34 
34 
36 
36 
36 
36 
36 
36 
36 
36 
36 
36 
36 
36 
36 
36 
36 
38 
38 
38 
38 
38 
38 
38 
38 
38 
38 
38 

555555555555 
55555655655555 
555556565655555 
5555565665655555 
5556565655555556 
55555566666555555 
55555656665655555 
55556656655555556 
555556566665655555 
555556656665565555 
555556665665556555 
555566566555655655 
555566566556556555 
555656565565656555 
5555565666665655555 
5555566666655555556 
5555665665565656555 
5555665666555655565 
5556565665565655655 
5556565665566556555 
55555656666665655555 
55555665666656655555 
55555666666555655655 
55555666666556556555 
55556656655665665555 
55556656656566565555 
55556656665565655655 
55556656665566556555 
55556666665555555566 
55565656655665656555 
55565656656566556555 
55565666655655555656 
55566566655565556565 
55656656556555656565 
55656665556555566565 
555556566666665655555 
555556665666566655555 
555556666665565656555 
555556666666555655565 
555566566655665656555 
555566566656565655655 
555566566656566556555 
555566666655556556655 
555566666655655565565 
555656566565665656555 
555656566566656555556 

0 
1 
0 
8 
0 
1 
3 
1 

18 
6 
0 

19 
0 
0 

12 
5 
4 

11 
12 
0 

23 
9 

290 
5 

10 
1 

28 3 
11 
2 

26 
23 
23 

1 
4 
1 

13 
0 

353 
402 
375 

17 
367 
409 

0 
17 

360 

36 
54 
63 
90 
75 

151 
117 
107 
168 
184 
180 
151 
150 
144 
212 
219 
196 
229 
204 
195 
275 
319 
290 
299 
270 
283 
283 
299 
312 
266 
269 
289 
364 
288 
272 
355 
456 
353 
402 
375 
385 
367 
409 
468 
355 
360 

38 
38 
38 
38 
38 
38 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 
40 

555656566656656555655 
555656666556565566555 
555656666565655556556 
555656666655655555656 
555666666555555555666 
556566565565565665655 
5555556666666666555555 
5 5 5 5 565666666665655 5 5 5 
5555566566666666555555 
5555566666655665665555 
5555566666656566565555 
5555566666665565655655 
5555566666665566556555 
5555566666665655655565 
5555665666556665665555 
5555665666565665656555 
5555665666566566556555 
5555665666566656555556 
5555665666656656555655 
5555666666555656566555 
5555666666556555656565 
5555666666556556556556 
5555666666556556565655 
5 5 5 56666665 566556655 5 5 
5555666666565556555656 
5556565656666665555556 
5556565665665665656555 
5556565665666565655655 
5556565665666566556555 
5556565665666656555556 
5556566665566555665565 
5556566665656555656565 
5556566665656556565655 
5556566665656655665555 
5556566665665555655665 
5556566665665556555656 
5556566665665655655565 
5556566666556556556655 
5556566666556655656555 
5556566666566555565556 
5565665655656566656555 
5565665656556565665655 
5565665656556656565556 
5565665656565656565565 
5565665656565656655655 
5566656655655655656565 

2 
16 

377 
1 
0 

14 
1 

31 
8 

508 
8 

498 
20 

1 
37 

476 
31 

512 
5 
7 

34 
34 

540 
36 
34 
0 

30 
474 

31 
18 
30 

497 
30 
47 
34 
0 

10 
8 
1 

494 
31 
31 

1 
8 
2 
0 

360 
386 
377 
365 
378 
382 
70 1 
493 
596 
508 
536 
498 
528 
565 
535 
476 
533 
512 
489 
507 
542 
582 
540 
560 
524 
432 
454 
474 
487 
480 
500 
497 
496 
54 1 
494 
483 
520 
502 
54 1 
494 
493 
473 
513 
518 
562 
576 

compatible with a fullerene of a given point group is 
straightforward, and can be automated using the techniques 
described elesewhere;' all that is required is an adjacency 
matrix (efficiently coded in most cases by the face spiral 
algorithm 19). Symmetry assignment, orbit analysis and KS 
counting then follow. Table 1 lists all possible structural 
isomers of the fullerenes from C20-C40, gives the number of 
totally symmetric KS for each and compares it to the full 
Kekule count. 68 of the 92 cases considered in Table 1 have 
multiple totally symmetric Kekuli structures and hence are 
candidates for bond-stretch isomerism. The smallest fullerene 
of this type is the D, isomer of c 2 8  which is considered further 
in the following section. 

Bond-length Isomers of CZs 

c28 has three fullerene isomers (Td 1, D, right- and left-handed 
2 and 3) of which the most stable is predicted to be the 
tetrahedral form, with an open-shell ' A z  ground state." 
Nevertheless, there is at least one pair of enantiomorphic 
minima for the D, isomers, and D ,  C28 has been studied at both 

ab initio and semiempirical levels as the prototype system for 
the Stone-Wales mechanism of fullerene isomerisation.21 

The tetrahedral isomer of c28 has four isolated hexagonal 
rings and four of its atoms lie on C3 axes, so there can be no 
totally symmetric KS. This isomer has 75 non-totally symmetric 
KekulC structures. In the D, isomers the hexagons occur as two 
naphthalene-like patches which lie on a C, axis and are twisted 
with respect to one another by an angle of roughly 45". The 
sense of this twist determines the enantiomer. As Table 1 shows, 
each enantiomer has eight totally symmetric Kekuli structures 
(out of a total of 90 KS). If the conjecture made in the present 
work is correct, then some or all of these KSs should correspond 
to D2 minima. We already know that there is one such 
minimum;20.21 the possibility that there may be more is now 
tested by explicit calculation. 

The totally symmetric structures of D, c 2 8  can be counted 
'by hand' as follows. The 42 edges of the fullerene cage fall into 
12 sets: nine sets of four and three of two (shown in Fig. 2). Each 
set of four equivalent bonds is an example of the regular orbit of 
D,, the orbit in which every edge is shifted by every symmetry 
operation apart from the identity and which therefore has 
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10 

12 12 

10 

Fig. 2 Sets of equivalent edges in the D, isomer of C,, 

a permutation representation equal to the regular represent- 
ation* of the group [see eqn. (4)]. Each set of two equivalent 

K1 K2 

K3 K4 

bonds lies on one of the three independent C,  rotational axes. 
The permutation representations of these three sets are shown 
in eqns. (5)-(7). 

In a Kekule structure 14 of the 42 edges are double, and if the 
KS is to be totally symmetric the double bonds must form 
complete orbits, so that the conceivable combinations are 
3 0 4  + 02,, 3 0 ,  + O,,, 3 0 4  + O,, and 20, + O,, + O,, + 
O,, with ideal (localised) 7c occupied orbitals spanning 4A + 
3B1 + 38 ,  + 4B3, 4A + 4B, + 
3B, + 3B3, 5A + 3B1 + 3B2 + 3B3, respectively. Of the 288 
ways of selecting the 0, orbits to fit these combinations, the 
vast majority can be ruled out because they would place double 
bonds next to each other, and the only survivors are easily found 
to be the eight structures shown in Fig. 3. Only one of these (K4) 
has all three 2-orbits occupied by double bonds, three more (K2, 
K7, KS) have double bonds on the junctions of the hexagonal 
rings, and two each have double bonds on one of the other 2- 
orbits [(K3, K5) and (Kl ,  K6)]. 

Each KS was used to generate a starting geometry with 
an appropriate pattern of long and short bonds, and then the 
structure was optimised by three different semiempirical 
methods (AM1, PM3 and MNDO) using the routines available 
in the MOPAC package. Optimisation was carried out in 
Cartesian coordinates. Each critical point was characterised by 
diagonalisation of the full Hessian matrix. All three 
Hamiltonians agree on the number and types of minimum found 
from the eight starting points (Tables 2 and 3), all predict the 
same D, structure (K2) to be optimal, and all give the same 
order of energies for the less stable structures. The eight starting 
geometries gave rise to three distinct D ,  minima. There are 
therefore at least three pairs of enantiomorphic D, minima on 
the potential surface, each mapping onto a single Kekule 

4A + 3B1 + 4B2 + 3B3, 

K5 

K7 K8 
Fig. 3 The totally symmetric KekulC structures of D, C,,.  The 
structures Kl-K8 correspond to different choices of double bonds 
within the constraint of overall D, symmetry. In the notation of Fig. 2 
the sets of double bonds in each structure are: 5,6,7, 10 (Kl) ;  1,5,7, 1 1 
(K2); 1,4,8, lO(K3); 3,5,10,11, 12(K4); 2,3,8, 12(K5);4,6,9, lO(K6); 
1,4,9, 1 1 (K7) and 2,3,9, 1 1 (KS). Note that there are three orthogonal 
trios (Kl, K3, K8), (Kl, K5, K7) and (K2, K5, K6) that have the property 
that within a trio every edge in C, ,  is double in just one and single in just 
two of the Kekule structures. 

Table 2 Relative stability of D, minimum-energy structures of C, , .  
Each minimum is labelled by the starting KekulC structure that it most 
resembles. Energies quoted in the Table (in kJ mol-') are heats of 
formation referred to the most stable D ,  structure calculated by each of 
the three semiempirical methods (PM 1, AM 1 and MNDO) available in 
the MOPAC program 

PM3 AM1 MNDO 

K6 316 346 28 1 
K5 141 150 135 
K2 0 0 0 

* The regular representation of a point group G has character I GI, the 
order of the group, under the identity, and zero under all other 
operations. It contains all irreducible representations of the group with 
weights equal to their degeneracies. 

structure (that is to say, in each case the 14 shortest bonds in 
the optimised structure are the formal double bonds of the 
starting guess). 
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Table 3 Geometric structures of the three D ,  minima of CZ8. The 12 
distinct bond lengths (see Fig. 2) are quoted (in A) for the MNDO 
Hamiltonian. A star denotes a formal double bond of the starting KS. 
Results for the PM3 and AM1 methods are similar and give the same 
pattern of near-single and near-double bonds. Note the delocalisation in 
the naphthalene patches of K2 where the central formal double bond is 
surrounded by four long bonds, but the other six bonds of the patch are 
all short 

Bond orbit Multiplicity K2 K5 K6 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

4 
4 
4 
4 
4 
4 
4 
4 
4 
2 
2 
2 

1.395* 
1.430 
1.498 
1.519 
1.406* 
1.475 
1.379* 
1.477 
1.519 
1.539 
1.414* 
1.494 

1.45 1 
1.385* 
1.423* 
1.517 
1.460 
1.492 
1.449 
1.422 
1.520 
1.536 
1.453 
1.406* 

1.474 
1.447 
I SO2 
1.422* 
1.482 
1.404* 
1.480 
1.515 
1.407* 
1.434* 
1.464 
1.515 

A previous study2' has shown a close correspondence 
between ab initio SCF and PM3 semiempirical levels of theory 
in predictions of the number, type, symmetry and approximate 
geometry of critical points on the c 2 8  potential surface, and so 
it seems reasonable to expect that all three of these minima 
would survive at an ab initio level of calculation. Structures K 2  
and K 5  are known to remain true minima when an SCF 
calculation is carried out within the STO-3G minimal basis. 

The comparative stability of structure K 2  is easily 
rationalised. The starting KS is the only KekulC structure in 
which all four hexagons of the cage have alternating single and 
double bonds. In the optimised structure the alternation in 
bond length within the fused hexagon pairs is reduced. 
Although the electronic configuration (a)4"(b1)42(b2)40(b3)40 
[corresponding to 28 ls2 cores, 42 edge bonds and a 7[: 

configuration (a)8(b1)8(b2)6(b3)6] was predicted from the fully 
localised KS, in this particular case the symmetries of the 
occupied orbitals are not changed by delocalisation within the 
naphthalene-like fragments and so the configuration remains 
formally the same. 

The survival of exactly three of the original eight KS as fully 
symmetric minima may be a consequence of the interlocking 
relationship between them. Inspection of Fig. 3 shows that the 
set of Kekule structures K2, K5 and K 6  is special in that every 
CC bond appears as a double bond in one and only one of the 
three. Each of these Kekule structures corresponds to a choice 
of one distinct 0, orbit from the three, and three distinct O4 
orbits from the nine, available; the choices are exclusive and 
together they exhaust the set of edges. As arguments based on 
the four-colour theorem show, it is always possible to find a 
set of three KS that exhausts the edges of any fullerene graph, 
but they are not always totally symmetric. In the present 
case, the 'orthogonality' of the structures makes it easier for the 
optimisation to be trapped in a local minimum, and hence to 
find the structures of higher energy. The two other orthogonal 
trios of KekulC structures are ( K l ,  K3, K8) and ( K l ,  K5, K7), 
but neither of these contains the relatively stable K2. 

The three surviving minima correspond to different electronic 
configurations, the different occupancies of the b-type orbitals 
reflecting the different symmetries of the 7r MOs and the 
different arrangement of long and short bonds. Since the orbital 
occupancies are different, transitions between them are likely to 
involve loss of elements of symmetry, and hence transition states 
of C,  or C, symmetry; exploratory calculations with the PM3 
Hamiltonian for the conversion of K 5  into K 2  indicate a C,  
transition state. 

These calculations provide some support for our suggestion 
that the fullerene class may generate bond length isomers. 
Although the D ,  isomers of C,, are unlikely to be accessible 
experimentally because the Td geometric isomer lies well below 
the most stable of them,*' the evidence from Table 1 is that 
minima of this kind may grow in number for many of the larger 
fullerenes. It therefore seems reasonable to expect that for at 
least some of these cases the conditions for simultaneous 
stability of one or more bond length isomers will be fulfilled. 

At a practical level, the present results also give a warning to 
those of us who perform ab initio calculations: a minimum with 
the expected symmetry and connectivity may be found in the 
course of an optimisation on the fullerene potential energy 
hypersurface, but it may not be the only or the lowest minimum 
of that type. 
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